
MALCOLM: A MIDDLELAYER FRAMEWORK FOR GENERIC

CONTINUOUS SCANNING

T. Cobb, M. Basham, G. Knap, C. Mita, M. Taylor, G. D. Yendell, Diamond Light Source Ltd,

Oxfordshire, UK

A. Greer, Observatory Sciences, Cambridge, UK

Abstract
Malcolm is a middlelayer framework that implements

high level configure/run behaviour of control system

components like those used in continuous scans. It was

created as part of the Mapping project at Diamond Light

Source to improve the performance of continuous scan-

ning and make it easier to share code between beamlines.

It takes the form of a Python framework which wraps up

groups of EPICS PVs into modular "Blocks". A hierarchy

of these can be created, with the Blocks at the top of the

tree providing a higher level scanning interface to GDA,

Diamond's Generic Data Acquisition software. The

framework can be used as a library in continuous scan-

ning scripts, or can act as a server via pluggable commu-

nications modules. It currently has server and client sup-

port for both pvData over pvAccess and JSON over web-

sockets. When running as a webserver this allows a web

GUI to be used to visualize the connections between these

blocks (like the wiring of EPICS areaDetector plugins).

This paper details the architecture and design of frame-

work, and gives some examples of its use at Diamond.

INTRODUCTION

Diamond Light Source [1] is a third-generation 3 GeV

synchrotron light source with 35 independent experi-

mental stations attached to photon beamlines. A number

of these beamlines use a technique called continuous

scanning where motors are moved in a continuous trajec-

tory while a detector takes a number of data frames syn-

chronized with hardware trigger pulses as illustrated in

Fig. 1. This technique increases the efficiency of an ex-

periment by reducing the number of times a motor has to

decelerate, settle and accelerate, effectively decreasing

the scan dead-time.

Figure 1: Detector frames synchronous with a motor un-

dergoing a snake trajectory scan.

THE MAPPING PROJECT

Diamond has multiple beamlines capable of conducting

mapping experiments where the sample is moved through

the X-ray beam and a frame is sampled on one or more

detectors at each point. In 2015, Diamond created the

Mapping Project [2, 3] to enable all beamlines that con-

duct mapping to benefit from common features like live

visualization and processing of data and optimisations

like continuous scanning. A set of 5 beamlines with di-

verse techniques and detectors were selected to participate

in the project to ensure that the stack of components being

developed (as shown in Fig. 2) could be easily deployed

on multiple beamlines and support a variety of experi-

mental equipment and instrumentation.

Figure 2: Mapping Project component stack.

New developments were made in trajectory scanning

the Delta Tau Geobrick [4], writing multi-dimensional

data using HDF5 SWMR [5], live processing and visuali-

zation of data in GDA [6] and DAWN [7], and the Mal-

colm [8] middlelayer that is the subject of this paper.

Detector

Frame

Encoder

Capture

MALCOLM

Malcolm provides an abstraction layer on top of EPICS

[9] that wraps up groups of PVs and presents a higher

level scanning interface to GDA via pvAccess [10]. This

means that it can take care of the variations in triggering

schemes between different beamlines, and GDA only

needs to pass high level scan parameters such as motion

trajectory and exposure time down, rather than needing to

know how all the underlying devices are wired up.

Blocks, Methods and Attributes

Malcolm defines Blocks, each with a series of Methods

and Attributes, much like instances of classes in an object

oriented language. These are arranged in a hierarchy as

shown in Fig 3.

Figure 3: Layers of Malcolm Blocks.

The lowest level of Blocks in the Hardware Layer are

just a collection of Attributes that correspond to EPICS

devices like a single motor, or the areaDetector [11] HDF

writer plugin.

The Device Layer above this contains Blocks that rep-

resent a whole Detector or Motor Controller. They have

configure() and run() Methods and an Attribute that

shows what state it is currently in. When these methods

are called they co-ordinate their child Hardware Blocks to

perform a scan according to the parameters they are

passed.

The Scan Layer at the top exposes a scanning interface

to GDA. They also have configure and run Methods that

again co-ordinate their child Device Blocks to perform a

scan.

Composing Blocks from Controllers and Parts

A key aim of the Mapping project was to make reusable

components that could be deployed across multiple beam-

lines. Blocks with Methods and Attributes make a good

interface to the outside world, but aren’t the right size to

make re-usable chunks of code. For instance, the config-

ure Method of a Detector Block in the Device Layer

might co-ordinate an areaDetector driver with a chain of a

stats plugin and an HDF writer plugin, but writing a sin-

gle object that did all of this would preclude using it with

the same detector without the stats plugin.

Malcolm solves this by forming a Block by composi-

tion from a co-ordinating Controller and some behaviour

defining Parts. The detector example above is illustrated

in Fig. 4.

Figure 4: Layers of Malcolm Blocks.

Each element in the areaDetector driver and plugin

chain is defined by a Block in the Hardware Layer that

defines the PVs it exports. The Device Block is then

formed from a single Controller and one Part for each

child Block which contains the logic that shows how to

use that Hardware Block within the current scan. This

allows the external interface provided by PVs to be sepa-

rated from small self-contained pieces of code that im-

plement one particular type of logic.

Block definitions in YAML

As the number of objects in a system grows, configur-

ing them becomes a more complicated task. Malcolm

allows objects to be instantiated by writing configuration

parameters in a structured YAML [12] file as shown in

Fig. 5.

Figure 5: YAML file for simDetector driver Block.

These YAML files define what collection of Controller

and Parts make up a specific Block. They define the pa-

rameters that should be passed to them, and how those

parameters should be used to create Controller and Part

instances. They are also used to create other Block in-

stances that are defined in other YAML files as well as

Hardware

Device

Scan Scan1

Detector1

Detector

Driver

HDF

Writer

Motion

Controller

Sample X
Motor

Device

- builtin.parameters.string:

 name: mri

 description: Malcolm Resource ID

- builtin.parameters.string:

 name: prefix

 description: The root PV for records

- builtin.controllers.StatefulController:

 mri: $(mri)

- ADCore.includes.adbase_parts:

 prefix: $(prefix)

- ca.parts.CADoublePart:

 name: gainX

 description: Image Gain in X

 pv: $(prefix):GainX

 rbvSuff: _RBV

 widget: textinput

...

Detector1 Block

Hardware

Drv Part

Drv
Block

Stats
Part

Stats
Block

HDF
Part

HDF
Block

instantiating include files that contain commonly used

Parts.

This whole system is made possible because Parts,

Controllers, Blocks and includes define the type and de-

scription of the arguments that should be passed to them.

This yields several benefits:

 Arguments specified in YAML are validated

and sensible error messages output when con-

figuring an entire Malcolm system.

 Documentation for the arguments to be passed

to each Part, Controller and Block is automati-

cally generated.

 It paves the way for a future tabular GUI edi-

tor for these YAML files.

Loading and saving definitions

Another benefit to the split between logic and interface

is that it gives an ideal place to load and save definitions

of Malcolm Blocks. For example, on a detector Block,

there might be a number of parameters like the trigger

mode that Malcolm does not control, but needs to be set

to a particular value in order for a scan to work. Malcolm

has the concept of saving and loading a design, and all

configuration Attributes by default are included in this

design. This means that when a scan is working, the de-

tector design can be saved, and then the design will be

checked and restored if necessary before each scan. It also

allows an Attribute that warns if the design has been mod-

ified and needs to be saved again.

This is useful because it allows end users like beamline

scientists to use this ability to turn on and off features of

Malcolm and create their own saved designs for custom

scans without having to restart or reconfigure Malcolm.

Asynchronous helper methods

To make continuous scanning fast, care needs to be

taken about which Attributes can be set at the same time

and whether completion needs to be waited for before

more Attributes are set. For example, let us consider set-

ting 3 Attributes on a Block. Exposure and period need to

be set first, then when they have completed the xml At-

tribute can be set with a value that has to be calculated in

a time consuming manner. Figure 6 shows the inefficient

but readable synchronous style:

Figure 6: Synchronous style configure method.

This code will put and wait for exposure, then put and

wait for period, then calculate a value, then put and wait

for xml. This can be made more efficient by doing both

initial puts at the same time, then doing the calculation

before waiting for completion of the two initial puts.

Figure 7 shows this code written in an efficient but less

readable callback style:

Figure 7: Callback style configure method.

This is much more efficient because the time where the

synchronous code was waiting for puts to complete is

now spent calculating a value. Unfortunately the code is

now less readable because you have to read the callback

function to follow the control flow. Figure 8 shows how

this can be improved by using a futures style.

Figure 8: Futures style configure method.

This does exactly the same as the callback style, but

wraps up the callback functions in Future objects that can

be waited on. This restores the linear nature of the code

and makes it readable again. Malcolm exposes the helper

methods needed to allow this futures style to be written

side by side with the synchronous style to allow code to

retain its readability.

COMMUNICATING WITH MALCOLM

 Although Malcolm can be run standalone as a library,

the most common use case is to add some communica-

tions modules to it to allow it to be communicated with

from the outside. The two used at Diamond are websock-

ets [13] to allow a web GUI configuration view and

pvAccess for control system access from GDA.

Websockets

This communications module exposes the structure of

Malcolm Blocks via a JSON [14] protocol over websock-

ets. There is a client MalcolmJS [15] library that is used

to create a web GUI to allow configuration of the under-

lying Blocks from a web browser. It is generally used to

wire Hardware Blocks together and load/save configura-

tions. Figure 9 shows its use in wiring together Blocks to

configure a PandABox [16].

def configure(self, block, params):

 block.exposure.put_value(

 params.exposure)

 block.period.put_value(

 params.exposure)

 xml = self.time_consuming_f(params)

 block.xml.put_value(xml)

def cb(self, value):

 self.q.put(value)

def configure(self, block, params):

 self.q = Queue()

 block.exposure.put_value_async(

 params.exposure, self.cb)

 block.period.put_value_async(

 params.exposure, self.cb)

 xml = self.time_consuming_f(params)

 for i in range(2):

 assert not isinstance(

 q.get(), Exception)

 block.xml.put_value(xml)

def configure(self, block, params):

 fs = block.put_values_async(

 exposure=params.exposure,

 period=params.exposure)

 xml = self.time_consuming_f(params)

 block.wait_futures(fs)

 block.xml.put_value(xml)

Figure 9: Malcolm web GUI configuring a PandABox.

pvAccess

GDA communicates with the top level scan Block, con-

figuring it with a set of parameters then telling it to run.

These are done using the pvaPy [17] Python bindings to

pvAccess in Malcolm, and the pvAccessJava [18] bind-

ings on the GDA side. Methods support Get and Monitor

for introspection of requested arguments and RPC for

calling them. Attributes support Get and Monitor for

introspection of value, timestamp, alarm status and de-

scriptive metadata, and Put for changing value.

Serialization of Blocks in Malcolm

To allow the web GUI to introspect the Blocks that can

be connected and which parameters can be set on them

and to allow GDA to introspect configure arguments,

Block structures can be serialized. All data classes in

Malcolm have to_dict() and from_dict() methods

allowing their structure to be exposed to the outside

world. Figure 10 shows the serialized version of a Block

as described in pvData Meta Language [19].

Figure 10: Block structure.

Every Block has some metadata about itself, an Attribute

displaying its health, and optional additional Attributes

and Methods.

Figure 11 shows the serialized version of an Attribute.

Figure 11: Attribute structure.

This is conformant to an EPICS V4 Normative Types

[20] NTScalar because the value, alarm and timeStamp

fields are present, but the metadata like descriptor, display

and control have been moved to a child ScalarMeta ob-

ject. This allows metadata to be specified separately to

transient fields like value and timeStamp, allowing the

same Meta objects to be reused to specify the arguments

that should be passed to a Method.

Figure 12 demonstrates the serialized version of a Meta

object.

Figure 12: ScalarMeta structure.

It contains some of the meta information that would

normally appear in the NTScalar, with some additions for

specific Meta objects like the dtype (e.g. uint32) for the

NumberMeta.

Serialization of Blocks in GDA

To facilitate communication between GDA and Mal-

colm over the pvAccess channel, a serialization library

was built in Java to convert Java objects into PVStruc-

tures and vice versa. The pvMarshaller [21] library takes

any Java object, inspects its members using the Java Re-

flection API, and creates a representation of that object in

a PVStructure as shown in Fig. 13.

Figure 13: pvMarshaller serialization and deserialization.

Block :=

malcolm:core/Block:1.0

 BlockMeta meta

 Attribute health

 {Attribute <attribute-name>}0+

 {Method <method-name>}0+

Attribute := Scalar | ScalarArray | …

Scalar :=

epics:nt/NTScalar:1.0

 scalar_t value

 alarm_t alarm :opt

 time_t timeStamp :opt

 ScalarMeta meta :opt

ScalarMeta := NumberMeta | StringMeta …

NumberMeta :=

malcolm:core/NumberMeta:1.0

 string dtype

 string description

 string[] tags :opt

 bool writeable :opt

 string label :opt

 display_t display :opt

 control_t control :opt

Java Object
class MyClass {

 String Description = “Example”;

 int Count = 123;

 Boolean Used = true;

 List<String> Names = Arrays.asList(

 “alice”, “bob”);

}

PVStructure
structure

 string Description Example
 int Count 123
 boolean Used true
 string[] Names [alice,bob]

pvMarshaller

When deserializing from a PVStructure object into a

Java object, a new Java object of the target class is creat-

ed and its members populated with the values from the

source PVStructure. If the target class is not known, there

are mechanisms for determining it from the PVStructure

Key, and if this is not specified, a Java Map object is

created consisting of the key-value pairs from the

PVStructure. Advanced features of the library include the

ability to specify members to exclude from serialization,

and the ability for users to create custom serializers and

deserializers for classes whose member structures don’t

map exactly to the desired PVStructure.

CONCLUSION
Malcolm was created as an application to support ge-

neric continuous scanning across multiple diverse beam-

lines at Diamond. It aims to produce flexible, concise and

maintainable applications by providing tools to encourage

reuse of code, reducing future support effort for the main-

taining groups. Its pluggable communications modules

allow it to be configured from a web GUI and to act as a

service among the other elements that make up experi-

mental control. A rollout project is underway to expand its

use from the 5 initial beamlines to any Diamond beamline

that could benefit from continuous scanning.

REFERENCES

[1] R. P. Walker et al., “Commissioning and Status of

the Diamond Storage Ring”, in Proc. IPAC 2017,

Copenhagen, Denmark.

[2] M. Basham, J. Filik, “Generic Mapping Scans at

Diamond Light Source”, in Proc. NOBUGS 2016,

Copenhagen, Denmark.

[3] R. Walton, “Mapping Developments at Diamond”, in

Proc. ICALEPCS 2015, Melbourne, Australia.

[4] Delta Tau Geobrick, http://www.deltatau.com

[5] N. Rees, “Developing Hdf5 For The Synchrotron

Community”, in Proc. ICALEPCS 2015, Melbourne,

Australia.

[6] E. P. Gibbons, M. T. Heron, N. P. Rees, “GDA and

EPICS: working in unison for science driven data ac-

quisition and control at Diamond light source”, in

Proc. ICALEPCS 2011, Grenoble, France

[7] M. Basham et al., “Data Analysis WorkbeNch

(DAWN)”, Journal of synchrotron radiation, vol. 22,

pp. 828-838.

[8] Malcolm,
http://pymalcolm.readthedocs.io/en/latest/.

[9] EPICS, http://www.aps.anl.gov/epics/.

[10] pvAccess, http://epics-pvdata.sourceforge.net

[11] EPICS areaDetector,
http://cars9.uchicago.edu/software/epics/

areaDetector.html
[12] YAML, http://yaml.org

[13] websocket, https://www.websocket.org

[14] JSON, http://www.json.org

[15] I. Gillingham and T. Cobb, “MalcolmJS: a Browser-

Based Graphical User Interface”, presented at

ICALEPCS’17, Barcelona, Spain, May 2016, paper

THPHA184, this conference.

[16] S. Zhang et al, “PandABox: A Multipurpose Plat-

form For Multi-technique Scanning and Feedback

Applications”, presented at ICALEPCS’17, Barcelo-

na, Spain, May 2016, paper TUAPL05, this confer-

ence

[17] S. Veseli, “PvaPy: Python API for EPICS PV Ac-

cess”, in Proc. ICALEPCS 2015, Melboure, Austral-

ia.

[18] pvAccessJava,
 https://github.com/epics-base/pvAccessJava
[19] pvData Meta Language,

http://epics-pvdata.sourceforge.net/

docbuild/pvDataJava/tip/documentation/

 pvDataJava.html#pvdata_meta_language
[20] EPICS V4 Normative Types,
 http://epics-pvdata.sourceforge.net/

 alpha/normativeTypes/normativeTypes.html

[21] pvMarshaller, https://github.com/
 DiamondLightSource/pv-marshaller

