
MALCOLM: A MIDDLELAYER FRAMEWORK FOR GENERIC  

CONTINUOUS SCANNING 

T. Cobb, M. Basham, G. Knap, C. Mita, M. Taylor, G. D. Yendell, Diamond Light Source Ltd,  

Oxfordshire, UK 

A. Greer, Observatory Sciences, Cambridge, UK 

Abstract 
Malcolm is a middlelayer framework that implements 

high level configure/run behaviour of control system 

components like those used in continuous scans. It was 

created as part of the Mapping project at Diamond Light 

Source to improve the performance of continuous scan-

ning and make it easier to share code between beamlines. 

It takes the form of a Python framework which wraps up 

groups of EPICS PVs into modular "Blocks". A hierarchy 

of these can be created, with the Blocks at the top of the 

tree providing a higher level scanning interface to GDA, 

Diamond's Generic Data Acquisition software. The 

framework can be used as a library in continuous scan-

ning scripts, or can act as a server via pluggable commu-

nications modules. It currently has server and client sup-

port for both pvData over pvAccess and JSON over web-

sockets. When running as a webserver this allows a web 

GUI to be used to visualize the connections between these 

blocks (like the wiring of EPICS areaDetector plugins). 

This paper details the architecture and design of frame-

work, and gives some examples of its use at Diamond. 

INTRODUCTION 

Diamond Light Source [1] is a third-generation 3 GeV 

synchrotron light source with 35 independent experi-

mental stations attached to photon beamlines. A number 

of these beamlines use a technique called continuous 

scanning where motors are moved in a continuous trajec-

tory while a detector takes a number of data frames syn-

chronized with hardware trigger pulses as illustrated in 

Fig. 1. This technique increases the efficiency of an ex-

periment by reducing the number of times a motor has to 

decelerate, settle and accelerate, effectively decreasing 

the scan dead-time. 

Figure 1: Detector frames synchronous with a motor un-

dergoing a snake trajectory scan. 

THE MAPPING PROJECT 

Diamond has multiple beamlines capable of conducting 

mapping experiments where the sample is moved through 

the X-ray beam and a frame is sampled on one or more 

detectors at each point. In 2015, Diamond created the 

Mapping Project [2, 3] to enable all beamlines that con-

duct mapping to benefit from common features like live 

visualization and processing of data and optimisations 

like continuous scanning. A set of 5 beamlines with di-

verse techniques and detectors were selected to participate 

in the project to ensure that the stack of components being 

developed (as shown in Fig. 2) could be easily deployed 

on multiple beamlines and support a variety of experi-

mental equipment and instrumentation. 

 

 

Figure 2: Mapping Project component stack. 

New developments were made in trajectory scanning 

the Delta Tau Geobrick [4], writing multi-dimensional 

data using HDF5 SWMR [5], live processing and visuali-

zation of data in GDA [6] and DAWN [7], and the Mal-

colm [8] middlelayer that is the subject of this paper. 
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MALCOLM 

Malcolm provides an abstraction layer on top of EPICS 

[9] that wraps up groups of PVs and presents a higher 

level scanning interface to GDA via pvAccess [10]. This 

means that it can take care of the variations in triggering 

schemes between different beamlines, and GDA only 

needs to pass high level scan parameters such as motion 

trajectory and exposure time down, rather than needing to 

know how all the underlying devices are wired up. 

Blocks, Methods and Attributes 

Malcolm defines Blocks, each with a series of Methods 

and Attributes, much like instances of classes in an object 

oriented language. These are arranged in a hierarchy as 

shown in Fig 3. 

 

 

Figure 3: Layers of Malcolm Blocks. 

The lowest level of Blocks in the Hardware Layer are 

just a collection of Attributes that correspond to EPICS 

devices like a single motor, or the areaDetector [11] HDF 

writer plugin. 

The Device Layer above this contains Blocks that rep-

resent a whole Detector or Motor Controller. They have 

configure() and run() Methods and an Attribute that 

shows what state it is currently in. When these methods 

are called they co-ordinate their child Hardware Blocks to 

perform a scan according to the parameters they are 

passed. 

The Scan Layer at the top exposes a scanning interface 

to GDA. They also have configure and run Methods that 

again co-ordinate their child Device Blocks to perform a 

scan. 

Composing Blocks from Controllers and Parts 

A key aim of the Mapping project was to make reusable 

components that could be deployed across multiple beam-

lines. Blocks with Methods and Attributes make a good 

interface to the outside world, but aren’t the right size to 

make re-usable chunks of code. For instance, the config-

ure Method of a Detector Block in the Device Layer 

might co-ordinate an areaDetector driver with a chain of a 

stats plugin and an HDF writer plugin, but writing a sin-

gle object that did all of this would preclude using it with 

the same detector without the stats plugin. 

Malcolm solves this by forming a Block by composi-

tion from a co-ordinating Controller and some behaviour 

defining Parts. The detector example above is illustrated 

in Fig. 4.  

 

 

Figure 4: Layers of Malcolm Blocks. 

Each element in the areaDetector driver and plugin 

chain is defined by a Block in the Hardware Layer that 

defines the PVs it exports. The Device Block is then 

formed from a single Controller and one Part for each 

child Block which contains the logic that shows how to 

use that Hardware Block within the current scan. This 

allows the external interface provided by PVs to be sepa-

rated from small self-contained pieces of code that im-

plement one particular type of logic. 

Block definitions in YAML 

As the number of objects in a system grows, configur-

ing them becomes a more complicated task. Malcolm 

allows objects to be instantiated by writing configuration 

parameters in a structured YAML [12] file as shown in 

Fig. 5. 

 

 

Figure 5: YAML file for simDetector driver Block. 

These YAML files define what collection of Controller 

and Parts make up a specific Block. They define the pa-

rameters that should be passed to them, and how those 

parameters should be used to create Controller and Part 

instances. They are also used to create other Block in-

stances that are defined in other YAML files as well as 
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- builtin.parameters.string: 

    name: mri 

    description: Malcolm Resource ID 

 

- builtin.parameters.string: 

    name: prefix 

    description: The root PV for records 

 

- builtin.controllers.StatefulController: 

    mri: $(mri) 

 

- ADCore.includes.adbase_parts: 

    prefix: $(prefix) 

 

- ca.parts.CADoublePart: 

    name: gainX 

    description: Image Gain in X 

    pv: $(prefix):GainX 

    rbvSuff: _RBV 

    widget: textinput 

 

... 

Detector1 Block 
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instantiating include files that contain commonly used 

Parts. 

This whole system is made possible because Parts, 

Controllers, Blocks and includes define the type and de-

scription of the arguments that should be passed to them. 

This yields several benefits: 

 Arguments specified in YAML are validated 

and sensible error messages output when con-

figuring an entire Malcolm system. 

 Documentation for the arguments to be passed 

to each Part, Controller and Block is automati-

cally generated. 

 It paves the way for a future tabular GUI edi-

tor for these YAML files. 

Loading and saving definitions 

Another benefit to the split between logic and interface 

is that it gives an ideal place to load and save definitions 

of Malcolm Blocks. For example, on a detector Block, 

there might be a number of parameters like the trigger 

mode that Malcolm does not control, but needs to be set 

to a particular value in order for a scan to work. Malcolm 

has the concept of saving and loading a design, and all 

configuration Attributes by default are included in this 

design. This means that when a scan is working, the de-

tector design can be saved, and then the design will be 

checked and restored if necessary before each scan. It also 

allows an Attribute that warns if the design has been mod-

ified and needs to be saved again. 

This is useful because it allows end users like beamline 

scientists to use this ability to turn on and off features of 

Malcolm and create their own saved designs for custom 

scans without having to restart or reconfigure Malcolm. 

Asynchronous helper methods 

To make continuous scanning fast, care needs to be 

taken about which Attributes can be set at the same time 

and whether completion needs to be waited for before 

more Attributes are set. For example, let us consider set-

ting 3 Attributes on a Block. Exposure and period need to 

be set first, then when they have completed the xml At-

tribute can be set with a value that has to be calculated in 

a time consuming manner. Figure 6 shows the inefficient 

but readable synchronous style: 

 

 

Figure 6: Synchronous style configure method. 

This code will put and wait for exposure, then put and 

wait for period, then calculate a value, then put and wait 

for xml. This can be made more efficient by doing both 

initial puts at the same time, then doing the calculation 

before waiting for completion of the two initial puts. 

Figure 7 shows this code written in an efficient but less 

readable callback style: 

 

 

Figure 7: Callback style configure method. 

This is much more efficient because the time where the 

synchronous code was waiting for puts to complete is 

now spent calculating a value. Unfortunately the code is 

now less readable because you have to read the callback 

function to follow the control flow. Figure 8 shows how 

this can be improved by using a futures style. 

 

 

Figure 8: Futures style configure method. 

This does exactly the same as the callback style, but 

wraps up the callback functions in Future objects that can 

be waited on. This restores the linear nature of the code 

and makes it readable again. Malcolm exposes the helper 

methods needed to allow this futures style to be written 

side by side with the synchronous style to allow code to 

retain its readability. 

COMMUNICATING WITH MALCOLM 

 Although Malcolm can be run standalone as a library, 

the most common use case is to add some communica-

tions modules to it to allow it to be communicated with 

from the outside. The two used at Diamond are websock-

ets [13] to allow a web GUI configuration view and 

pvAccess for control system access from GDA. 

Websockets 

This communications module exposes the structure of 

Malcolm Blocks via a JSON [14] protocol over websock-

ets. There is a client MalcolmJS [15] library that is used 

to create a web GUI to allow configuration of the under-

lying Blocks from a web browser. It is generally used to 

wire Hardware Blocks together and load/save configura-

tions. Figure 9 shows its use in wiring together Blocks to 

configure a PandABox [16]. 

 

def configure(self, block, params): 

 block.exposure.put_value( 

        params.exposure) 

 block.period.put_value( 

        params.exposure) 

 xml = self.time_consuming_f(params) 

 block.xml.put_value(xml) 

def cb(self, value): 

 self.q.put(value) 

 

def configure(self, block, params): 

 self.q = Queue() 

 block.exposure.put_value_async( 

        params.exposure, self.cb) 

 block.period.put_value_async( 

        params.exposure, self.cb) 

 xml = self.time_consuming_f(params) 

 for i in range(2): 

        assert not isinstance( 

            q.get(), Exception) 

 block.xml.put_value(xml) 

def configure(self, block, params): 

 fs = block.put_values_async( 

  exposure=params.exposure, 

  period=params.exposure) 

 xml = self.time_consuming_f(params) 

 block.wait_futures(fs) 

 block.xml.put_value(xml) 



Figure 9: Malcolm web GUI configuring a PandABox. 

pvAccess 

GDA communicates with the top level scan Block, con-

figuring it with a set of parameters then telling it to run. 

These are done using the pvaPy [17] Python bindings to 

pvAccess in Malcolm, and the pvAccessJava [18] bind-

ings on the GDA side. Methods support Get and Monitor 

for introspection of requested arguments and RPC for 

calling them. Attributes support Get and Monitor for 

introspection of value, timestamp, alarm status and de-

scriptive metadata, and Put for changing value. 

Serialization of Blocks in Malcolm 

To allow the web GUI to introspect the Blocks that can 

be connected and which parameters can be set on them 

and to allow GDA to introspect configure arguments, 

Block structures can be serialized. All data classes in 

Malcolm have to_dict() and from_dict() methods 

allowing their structure to be exposed to the outside 

world. Figure 10 shows the serialized version of a Block 

as described in pvData Meta Language [19].  

 

 

Figure 10: Block structure. 

Every Block has some metadata about itself, an Attribute 

displaying its health, and optional additional Attributes 

and Methods. 

Figure 11 shows the serialized version of an Attribute.  

 

 

Figure 11: Attribute structure. 

This is conformant to an EPICS V4 Normative Types 

[20] NTScalar because the value, alarm and timeStamp 

fields are present, but the metadata like descriptor, display 

and control have been moved to a child ScalarMeta ob-

ject. This allows metadata to be specified separately to 

transient fields like value and timeStamp, allowing the 

same Meta objects to be reused to specify the arguments 

that should be passed to a Method. 

Figure 12 demonstrates the serialized version of a Meta 

object. 

 

 

Figure 12: ScalarMeta structure. 

It contains some of the meta information that would 

normally appear in the NTScalar, with some additions for 

specific Meta objects like the dtype (e.g. uint32) for the 

NumberMeta. 

Serialization of Blocks in GDA 

To facilitate communication between GDA and Mal-

colm over the pvAccess channel, a serialization library 

was built in Java to convert Java objects into PVStruc-

tures and vice versa. The pvMarshaller [21] library takes 

any Java object, inspects its members using the Java Re-

flection API, and creates a representation of that object in 

a PVStructure as shown in Fig. 13.  

 

Figure 13: pvMarshaller serialization and deserialization. 

Block := 

 

malcolm:core/Block:1.0 

    BlockMeta   meta 

    Attribute   health 

    {Attribute  <attribute-name>}0+ 

    {Method     <method-name>}0+ 

Attribute := Scalar | ScalarArray | … 

 

Scalar := 

 

epics:nt/NTScalar:1.0 

    scalar_t    value 

    alarm_t     alarm       :opt 

    time_t      timeStamp   :opt 

    ScalarMeta  meta        :opt 

ScalarMeta := NumberMeta | StringMeta …  

 

NumberMeta := 

 

malcolm:core/NumberMeta:1.0 

    string    dtype  

    string    description 

    string[]  tags      :opt 

    bool      writeable :opt 

    string    label     :opt 

    display_t display   :opt 

    control_t control   :opt 

Java Object 
class MyClass { 

    String Description = “Example”; 

    int Count = 123; 

    Boolean Used = true; 

    List<String> Names = Arrays.asList( 

                            “alice”, “bob”); 

} 

 

 

PVStructure 
structure 

    string Description Example 
    int Count 123 
    boolean Used true 
    string[] Names [alice,bob] 

  
  

pvMarshaller 



When deserializing from a PVStructure object into a 

Java object, a new Java object of the target class is creat-

ed and its members populated with the values from the 

source PVStructure. If the target class is not known, there 

are mechanisms for determining it from the PVStructure 

Key, and if this is not specified, a Java Map object is 

created consisting of the key-value pairs from the 

PVStructure. Advanced features of the library include the 

ability to specify members to exclude from serialization, 

and the ability for users to create custom serializers and 

deserializers for classes whose member structures don’t 

map exactly to the desired PVStructure. 

 

CONCLUSION 
Malcolm was created as an application to support ge-

neric continuous scanning across multiple diverse beam-

lines at Diamond. It aims to produce flexible, concise and 

maintainable applications by providing tools to encourage 

reuse of code, reducing future support effort for the main-

taining groups. Its pluggable communications modules 

allow it to be configured from a web GUI and to act as a 

service among the other elements that make up experi-

mental control. A rollout project is underway to expand its 

use from the 5 initial beamlines to any Diamond beamline 

that could benefit from continuous scanning. 
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